The Ljung Box test

It is used to test the linear dependence between the current return and past return values; in other words, to assess the presence of autocorrelation in the return series.

If we denote the lag *k* correlation coefficient between the current return (at *T*) and the return at *T*-*k* by r_k , the Ljung-Box test (also called Portmanteau test) is calculated as:

$$Q = T(T+2)\sum_{k=1}^{s} r_k^2/(T-k)$$

where *s* is the number of lags taken into consideration when testing for autocorrelation, and T is the number of observations. The statistic tests whether any of a group of *s* autocorrelations of a time series are different from zero. As a consequence, the choice of *s* (number of lags of interest) – will affect the result¹.

Hypothesis testing:

The Null Hypothesis is that *none* of the autocorrelation coefficients up to lag *s* are different from zero. If the sample value of Q exceeds the <u>critical value</u> of a <u>chi-square</u> distribution with *s* degrees of freedom, then at least one of the *k* autocorrelations is statistically different from zero at the specified significance level².

In practice:

For a chosen significance level of 5%, the critical values of the chi-square distribution are the following, as function of the number of lags:

No. of lags	Critical value
1	3.84
2	5.99
3	7.82
4	9.49
5	11.07
6	12.59
7	14.07
8	15.51
9	16.92
10	18.31

Interpretation: If the calculated statistic exceeds the tabulated critical value at any lag, we can infer that returns are predicted by their past values up to that lag, in 95% of the cases.

¹ Some authors suggest that the choice of s = ln(T) provides the best power of the test.

² This is a one-tailed test.